sexta-feira, 23 de agosto de 2013

Multiplicação e divisão de números naturais por base 10

Multiplicação e divisão de números naturais por base 10

Trabalhe com a turma a regularidade das operações por 10, 100 ou 1.000 e ajude os alunos a utilizar as potências de 10 para resolver problemas com cálculo mental

Objetivos
- Observar a regularidade envolvida na multiplicação e na divisão de um número natural por 10, 100 ou 1.000
- Explicitar as operações ocultas no sistema numérico e compreender que elas determinam a posição ocupada pelos algarismos em todos os números
- Utilizar a estratégia multiplicativa por potências de 10 para resolver problemas com o cálculo mental

Conteúdo
Números e operações

Anos                                       3º e 4º anos

Tempo estimado                    Três aulas

Material necessário               Uma calculadora por aluno ou por dupla


Desenvolvimento
1ª etapa
Apresente aos alunos uma lista de multiplicações por 10 envolvendo unidades, dezenas e centenas. Por exemplo: 4 X 10, 25 X 15, 3 X 10, 30 X 10 e 300 X 10. Peça que eles resolvam utilizando a calculadora. Caso não saibam operá-la, realize algumas atividades para que se familiarizem com a máquina e, durante a atividade, circule pela sala para verificar se estão conseguindo. Solicite que anotem os resultados. Os cálculos podem ser feitos individualmente ou em duplas. Em seguida, com a ajuda da turma, levante quais os resultados obtidos e anote-os no quadro. Pergunte o que os estudantes podem observar em relação aos resultados das multiplicações. Questione se há alguma semelhança entre eles e qual é. É importante que eles não só notem que ao multiplicar um número natural por 10 se acrescenta o zero à direita desse número. É preciso que compreendam que o valor muda com o acréscimo do dígito à direita, o número passa para outra ordem de grandeza. Para trabalhar isso, problematize os resultados obtidos. Por exemplo, em 72 X 10 = 720, questione se o 2 tem o mesmo valor em 72 e em 720 e quais são os valores em cada situação. Os alunos devem notar que no número 72, o 2 vale dois e que em 720, representa vinte. Isto é, a classe identificará a multiplicação oculta no sistema numérico, que determina a posição que os algarismos ocupam nos números.

2ª etapa
Selecione alguns números e pergunte à classe quais deles poderiam ser resultado de uma multiplicação por 10. Você pode usar, por exemplo: 168, 7.980, 7.809, 9.800, 5.076 e 3.460. É esperado que as crianças respondam que podem ser todos os terminados em zero (no caso dos exemplos, 7.980, 9.800 e 3.460). É possível que elas fiquem em dúvida se 9.800 é uma resposta válida, pois termina em dois zeros. Problematize a questão.

3ª etapa
Proponha que as crianças completem a tabela abaixo:

Cálculo Quociente Resto
20 : 10       
340 : 10     
1.230 : 10  
1.235 : 10  
1.230 : 100

Faça o mesmo processo da etapa anterior, pedindo que os estudantes usem a calculadora nas resoluções e observem a regularidade envolvida nos resultados. Na divisão, o processo é o oposto da multiplicação, a ordem de grandeza diminui e quando o número natural termina em zero, deve-se retirar no número um, dois ou três zeros.

4ª etapa
Proponha agora multiplicações e divisões por 100 e por 1.000. Siga a mesma sequência realizada na multiplicação de números naturais por 10, selecionando os números para os cálculos com intencionalidade. Por exemplo, para a multiplicação por 100, proponha 23 X 100, 20 X 100, 105 X 100, 123 X 100 e 120 X 100. Questione o que os alunos podem concluir sobre as multiplicações e divisões realizadas nesta etapa. Para sistematizar as descobertas, escreva coletivamente a regra no quadro e oriente que todos a anotem no caderno. Espera-se que os alunos tenham identificado a regularidade envolvida nos processos multiplicativos. Multiplicar qualquer número natural por 10, 100 e 1.000 muda a ordem de grandeza, acrescentando-se um, dois ou três zeros, respectivamente, à direita da cifra. Por exemplo, em 23, o 3 vale três, mas depois que ele é multiplicado por 100, resultando em 2.300, o 3 vale trezentos. Explique que a regra elaborada em conjunto pode ser utilizada para solucionar outros cálculos, a fim de agilizar e facilitar a resolução. Assim, não há a necessidade de "armar a conta" nem utilizar a calculadora.

5ª etapa
Desafie a criançada apontar quais dos números a seguir poderiam ser resultado de uma multiplicação por 100: 450, 400, 2.350, 2.300, 2.003, 2.030 e 1.200.000. Observe as respostas apresentadas e questione as escolhas: 2.030 pode ser resultado de uma multiplicação por 100? Por quê? E 1.200.000?

6ª etapa
Peça que os alunos resolvam mentalmente novos cálculos envolvendo 10, 100 e 1.000 (sem usar a calculadora). Peça que utilizem o que aprenderam sobre a regularidade envolvida nesse tipo de cálculo sistematizado anteriormente. Quando terminarem os cálculos, oriente as crianças a checar os resultados na calculadora para conferir se estão corretos. Por exemplo:

45 X ___ = 4.500
128 X ___ = 1.280
17 X ____ = 17.000
___ X 10 = 320
___ X 100 = 800
___ X 100 = 1.300
___ X 100 = 4.000
___ X 1.000 = 7.000
___ X 1.000 = 29.000
___ X 1.000 = 50.000

Em seguida, oriente o grupo a registrar as divisões que podem ser elaboradas com base nas multiplicações feitas nessa etapa, por exemplo, em referência à primeira (45 X ___ = 4.500), é possível ter 4.500 : 100 = 45 e 4.500 : 45 = 100.

7ª etapa
Desafie os estudantes a resolver outra série de cálculos com múltiplos de 10, 100 e 1.000 (como 20, 320 e 1.300) usando procedimentos próprios. Assim como na etapa anterior, a calculadora só deve ser usada ao final da atividade, para conferir os resultados. Peça que registrem as estratégias usadas. Ao se apropriar as multiplicações e divisões trabalhadas anteriormente, os alunos começam a utilizá-las como apoio na resolução de cálculos mais complexos, como os propostos agora. Eles podem lançar mão da decomposição dos números, por exemplo. Caso o cálculo seja 20 X 43, a turma pode, por exemplo, fazer 10 X 2 X 43. Socialize as estratégias, perguntando como os estudantes resolveram os cálculos. Registre no quadro as diferentes propostas para que todos possam se apropriar das estratégias dos colegas.

Avaliação
Elabore uma série de situações-problema envolvendo as multiplicações e divisões por 10, 100 e 1.000, como: "Paula guarda anéis e pulseiras em caixinhas. Em cada uma delas, podem ser colocadas 10 peças. Se Paula tem 8 caixas, quantas bijuterias ela pode guardar?". Oriente a resolução em duplas, para que o grupo possa debater as estratégias. Quando todos tiverem terminado, organize a socialização das estratégias.

Consultoria Adriana Gorjão de Camargo Ramos
professora da EE Professor Daily Resende França, na capital paulista.


Nenhum comentário:

Postar um comentário